最好看的新闻,最实用的信息
01月11日 °C-°C
纽币 : 人民币=4.0742

16625份AI论文透露:26年来,人工智能并没有出现新技术,深度学习正在走向终点?

2019-01-29 来源: 华尔街见闻 原文链接 评论0条

麻省理工科技评论在1月25日发布的一篇文章中,分析了截至2018年11月18日,论文数据库中arXiv的16625份关于AI的论文。

从分析结果看,“AI”概念的风靡,有三个典型时期:90年代末21世纪初机器学习兴起,2010年代初神经网络概念复辟,近几年强化学习概念卷土重来。

16625份AI论文透露:26年来,人工智能并没有出现新技术,深度学习正在走向终点? - 1

值得注意的是,arXiv的AI论文模块始于1993年,而“人工智能”的概念可以追溯到1950年,因此这一数据库只能反馈近26年以来的AI研究。而且,arXiv每年收录的论文,也仅代表当时人工智能领域的一部分研究。不过,它仍然是观测AI行业研究趋势的最佳窗口。

我们接下来就来看一下,16625份论文提供了哪些信息。

01

起点:解救程序员

基于知识的系统,由人类将知识赋予计算机,而计算机承担知识的存储和管理功能,帮助人类解决问题。转变为机器学习后,计算机可以自主学习所有的人类知识。这是21世纪以来AI研究最大的转变。

在相关论文提及率最高的100个单词中,“逻辑”“约束”“规则”等基于知识系统的词语,自90年代以来出现率显著下降,而“数据”“网络”“性能”增长最为明显。

16625份AI论文透露:26年来,人工智能并没有出现新技术,深度学习正在走向终点? - 2

麻省理工科技评论称,这种变化的原因非常好理解。上世纪80年代,基于知识的系统广受欢迎,但各种各样的项目推进的同时,研究者遇到了一个问题:需要编写太多太多的规则,才能让计算机作出有效决策,这种成本太过高昂,研究者的动力也就随之减少。

机器学习实际上是解决这个问题的方案。机器学习让计算机从一系列数据中提取规则,把程序员从编码“逻辑”“规则”“约束”中解救了出来。

02

神经网络井喷

机器学习开始登上舞台,但是向深度学习的转变并没有马上出现。

神经网络是深度学习的核心机制,但麻省理工科技评论对16625篇论文关键字检索的结果显示,研究者还尝试了各种其他“提取规则”的方法,包括贝叶斯网络、马尔可夫模型、进化算法和支持向量机(support vector machines,SVM)等。

16625份AI论文透露:26年来,人工智能并没有出现新技术,深度学习正在走向终点? - 3

16625份AI论文透露:26年来,人工智能并没有出现新技术,深度学习正在走向终点? - 4

上世纪90年代到21世纪初,这些方法都在相互竞争。一直到2012年,视觉识别领域一年一度的ImageNet竞赛中,多伦多大学的Geoffrey Hinton教授和两个学生(Ilya Sutskever 和Alex Krizhevsky)的AlexNet横空出世,把图像识别的Top-5错误率(给出的前N个答案中有一个是正确答案的概率)降低到了15.3%,比亚军的26.5%低了41%)。

为了构建识别成千上万图像的系统,该团队采用了卷积神经网络。为避免数据过度拟合,AlexNet采用的神经网络还使用了数据扩充(平移、翻转等),以及随机(概率为0.5)“删除”(dropout)一些神经元来减少工作量等。

Geoffrey Hinton教授当时强调,深度对最终的识别精度尤为重要。深度学习技术由此引起了广泛关注。它从图像识别领域逐渐扩展开来,神经网络概念也随之井喷。

16625份AI论文透露:26年来,人工智能并没有出现新技术,深度学习正在走向终点? - 5

03

强化学习兴起

在深度学习推广数年后,人工智能发生了迄今为止的最后一次重要转变,即强化学习的兴起。

机器学习算法可以分为三种:有监督的学习,无监督的学习,以及强化学习。

有监督的学习给机器提供已经标记过的数据,机器学习的那些行为都是正确的行为。例如,标记过的花卉数据集告诉正在学习的机器模型,哪些照片分别是玫瑰、雏菊和水仙。而在给出一张测试图像时,机器应该把它和学习的数据进行对比,判断那是玫瑰、雏菊还是水仙。

有监督的学习最适用于解决有参照背景的问题。例如物品分类,或是基于面积、位置和公交便利程度判断住宅价格。所以,它是是最常用的也是最实用的机器学习算法。

标记数据集并不容易,所以也有无监督的学习。提供给无监督学习的数据集没有特定的期望结果,或是正确答案。机器需要自己提取特征和规律,来理解数据。

无监督学习的应用场景,包括银行通过账户异常行为判断虚假交易,电商通过已经加入到购物车的产品,推荐相关的其他产品等。

过去几年里,强化学习在研究领域的出现频率迅速提高。强化学习同样也采用未经标记的数据,但与无监督学习不同地是,强化学习还模拟了训练动物地过程,对进行学习的机器提供“奖惩机制”,在执行最优解时提供反馈。

16625份AI论文透露:26年来,人工智能并没有出现新技术,深度学习正在走向终点? - 6

和深度学习一样地,强化学习也是通过里程碑式的突破,才引起了研究者的注意。2015年,DeepMind的AlphaGo在强化学习训练下,成长为可以击败代表人类最高水平的围棋棋手,让埋没数十年地强化学习再次走到大众视线中。

而游戏本身,也是强化学习最好的渠道——它的奖励机制足够明确。在机器作出了正确选择后,它会获得“胜利”的反馈,而这样的反馈越多,机器越能选择正确的策略。

04

下一个十年的AI趋势

从过去二十多年的经验来看,人工智能领域并没有出现什么明显的新技术。各种技术在研究界的地位起起落落,但热门的种种技术,许多都起源于同一时间,即上世纪50年代左右。

以神经网络为例,它在60年代统治AI届,80年代也有些存在感,而在2012年卷土重来之前,这一概念濒临灭绝。

每一个10年里,都有不同的技术统领AI研究,华盛顿大学教授、The Master Alogrithm一书作者Pedro Domingos 称,2020年代也不会有什么不同,意味着深度学习的时代可能也很快就要终结。

参考资料

Karen Hao, MIT Technology Review, We analyzed 16,625 papers to figure out where AI is headed next, January 25, 2019

Geoffrey Hinton, Ilya Sutskever, Alex Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks, 2012

Isha Salian, NVIDIA blog, SuperVize Me: What’s the Difference Between Supervised, Unsupervised, Semi-Supervised and Reinforcement Learning?, August 2, 2018

今日评论 网友评论仅供其表达个人看法,并不表明网站立场。
最新评论(0)
暂无评论


Copyright Media Today Group Pty Ltd.隐私条款联系我们商务合作加入我们

分享新闻电话: (02) 8999 8797

联系邮箱: [email protected] 商业合作: [email protected]网站地图

法律顾问:AHL法律 – 澳洲最大华人律师行新闻爆料:[email protected]