华裔科学家李飞飞:她看见的世界和她改变的世界
华裔科学家李飞飞 | 斯坦福大学
编者按
李飞飞是人工智能领域最重要的科学家之一。她最重要的贡献,是创建了数据库ImageNet,有人工智能领域的从业者评论,“没有ImageNet,就没有现在的深度学习革命”,李飞飞也因此被誉为AI教母。
她以女性细腻的笔调, 讲述她作为女儿、科学家、移民和人道主义中眼中的世界,讲述了一个亚裔移民成长为美国三院院士、斯坦福大学终身教授的故事。
以下是她新出版的的新书《我看见的世界:李飞飞自传》(中文版已上市,由中信出版集团出版)的摘编,回顾了在AI寒冬的年代,她是怎样在一片反对声中找到她的北极星,创建人工智能领域早期最重要的数据库ImageNet的过程。
摘自|《李飞飞自传:我看见的世界》
出版|中信出版社
撰文|李飞飞
翻译|赵灿
“我听到的劝阻之声多得够我用一辈子”
每当我与同事们讨论ImageNet的想法,我就越发感到孤独。虽然有西尔维奥(注:李飞飞的丈夫)的鼓励,但这么庞大的工程刚刚起步,就遭到了几乎所有人的一致反对,真是不祥之兆。我需要一群志同道合的伙伴,但现在似乎一个队友都找不到。最糟糕的是,不管我是否同意,我都无法否认他们批评的合理性。
毫无疑问,在2006年,算法是计算机视觉的中心,而数据这个话题并不十分吸引人。数据生活在算法的阴影之下,仅仅被视为训练工具,就像成长中的孩子玩的玩具一样。
我听到的劝阻之声已经多得够我用一辈子了(可能下辈子也够了),最后我终于遇到了第一位支持者。李凯教授是微处理器架构领域的领军人物。微处理器架构是一门将数百万纳米级晶体管排列到世界上最复杂的设备中的艺术,因此他比大多数人都更了解指数思维的力量。他相信我的方向是正确的。尽管我们都在计算机科学领域,但领域之间没有太多交集,所以他无法直接为我做出贡献,但他知道我们需要强大的计算能力才能启动。他毫不犹豫地为我们的研究捐赠了一套工作站。这正是我所需要的支持。
不巧的是,他即将休长假,这缩短了我作为他的年轻同事的时间。不过,他的离开也不完全是坏事。他有一个极聪明的一年级研究生叫邓嘉,他要给邓嘉找个新导师。据李凯介绍,邓嘉是一个完美的合作者,他年轻有为,工程天赋出众,对新的挑战充满渴望。
除了聪颖过人,我也注意到,邓嘉是计算机视觉领域的新人。他的背景与众不同,因此他不仅具备一般计算机视觉专业学生难以拥有的工程技能,同时还完全没有背负期望的包袱。这个项目不同于传统的研究项目,甚至可以说充满风险,与当时的领域潮流格格不入。对于这一切,邓嘉并不知情。
于是,我们两人组成团队,开启了这个似乎需要成千上万甚至更多贡献者的项目。大多数同事对我的假设都不屑一顾。单从理论上讲,这一切确实说不通,但这是我人生中第一次感受到一种毋庸置疑的自信。无论需要多长时间,我确信我们正在做一件大事,一件也许具有历史意义的大事。
我的新办公室位于普林斯顿大学的计算机科学大楼,虽然已经搬过来快四个月了,但地上依然堆满了半开的纸箱,墙壁上也空空如也。我靠在扶手椅背上,大声呼出一口气,转了转椅子。邓嘉坐在我对面的沙发上——这是我到目前为止为办公室添置的唯一家具。
于是我们确定了一个目标,为每个物品类别搜集1000张不同的照片:1000张不同的小提琴照片、1000张不同的德国牧羊犬照片、1000张不同的抱枕照片,直到涵盖全部2.2万个类别,也就是一共需要大约2000万张图片。但即便是这个数字,也只是最终成品数据库的情况。我们可能需要从数亿张照片,甚至10亿张照片中筛选,才能达到目标。
邓嘉面露疑色。“我从理论上能理解,但这个工作量也太大了,属于天文数字,可不是谷歌搜索几次就能完成的。”
他说的当然没错,但是我们需要拥抱现实,而不是逃避现实。我们的目标是捕捉完整的现实世界。如果这个总数不能吓到我们,那才奇怪呢。
“邓嘉,我们希望算法能够看到的一切事物都存在于这个世界的某个地方。在我们说话的这一刻,就有人在拍摄这所有的细节。现在人人都有翻盖手机,每个人的圣诞节礼物都是数码相机。想象一下,如果把所有这些照片都放在一起,我们会看到什么,我们会看到整个世界的缩影啊!那就是从世界一头到另一头的日常生活的全部。”
“就算我们想办法组织好了图片,”他补充说,“这些图像本身也没有任何作用,对吧?它们需要先标注,才能用于模型训练,而且每一个标签都必须是准确的。”邓嘉暂停了一下,好像才感受到自己说的话有多么重要,“听上去又是一个浩大的工程。”